5,508 research outputs found

    Quiescent consistency: Defining and verifying relaxed linearizability

    Get PDF
    Concurrent data structures like stacks, sets or queues need to be highly optimized to provide large degrees of parallelism with reduced contention. Linearizability, a key consistency condition for concurrent objects, sometimes limits the potential for optimization. Hence algorithm designers have started to build concurrent data structures that are not linearizable but only satisfy relaxed consistency requirements. In this paper, we study quiescent consistency as proposed by Shavit and Herlihy, which is one such relaxed condition. More precisely, we give the first formal definition of quiescent consistency, investigate its relationship with linearizability, and provide a proof technique for it based on (coupled) simulations. We demonstrate our proof technique by verifying quiescent consistency of a (non-linearizable) FIFO queue built using a diffraction tree. © 2014 Springer International Publishing Switzerland

    Verifying linearizability on TSO architectures

    Get PDF
    Linearizability is the standard correctness criterion for fine-grained, non-atomic concurrent algorithms, and a variety of methods for verifying linearizability have been developed. However, most approaches assume a sequentially consistent memory model, which is not always realised in practice. In this paper we define linearizability on a weak memory model: the TSO (Total Store Order) memory model, which is implemented in the x86 multicore architecture. We also show how a simulation-based proof method can be adapted to verify linearizability for algorithms running on TSO architectures. We demonstrate our approach on a typical concurrent algorithm, spinlock, and prove it linearizable using our simulation-based approach. Previous approaches to proving linearizabilty on TSO architectures have required a modification to the algorithm's natural abstract specification. Our proof method is the first, to our knowledge, for proving correctness without the need for such modification

    Viewpoint consistency in Z and LOTOS: A case study

    Get PDF
    Specification by viewpoints is advocated as a suitable method of specifying complex systems. Each viewpoint describes the envisaged system from a particular perspective, using concepts and specification languages best suited for that perspective. Inherent in any viewpoint approach is the need to check or manage the consistency of viewpoints and to show that the different viewpoints do not impose contradictory requirements. In previous work we have described a range of techniques for consistency checking, refinement, and translation between viewpoint specifications, in particular for the languages LOTOS and Z. These two languages are advocated in a particular viewpoint model, viz. that of the Open Distributed Processing (ODP) reference model. In this paper we present a case study which demonstrates how all these techniques can be combined in order to show consistency between a viewpoint specified in LOTOS and one specified in Z. Keywords: Viewpoints; Consistency; Z; LOTOS; ODP

    A SINDA '85 nodal heat transfer rate calculation user subroutine

    Get PDF
    This paper describes a subroutine, GETQ, which was developed to compute the heat transfer rates through all conductors attached to a node within a SINDA '85 thermal submodel. The subroutine was written for version 2.3 of SINDA '85. Upon calling GETQ, the user supplies the submodel name and node number which the heat transfer rate computation is desired. The returned heat transfer rate values are broken down into linear, nonlinear, source and combined heat loads

    Differences between Monte Carlo models for DIS at small-x and the relation to BFKL dynamics

    Full text link
    The differences between two standard Monte Carlo models, Lepto and Ariadne, for deep inelastic scattering at small-x is analysed in detail. It is shown that the difference arises from a `unorthodox' suppression factor used in Ariadne which replaces the normal ratio of parton densities. This gives rise to a factor that qualitatively is similar to what one would expect from BFKL dynamics for some observables like the energy flow and forward jets but not for the 2+1 jet cross-section. It is also discussed how one could use the 2+1 jet cross-section as a probe for BFKL dynamics.Comment: 10 pages Latex, 4 eps figure

    Diffractive deeply inelastic scattering of hadronic states with small transverse size

    Get PDF
    Diffractive deeply inelastic scattering from a hadron is described in terms of diffractive quark and gluon distributions. If the transverse size of the hadronic state is sufficiently small, these distributions are calculable using perturbation theory. We present such a calculation and discuss the underlying dynamics. We comment on the relation between this dynamics and the pattern of scaling violation observed in the hard diffraction of large-size states at HERA.Comment: 8 pages including 3 figures, REVTE

    Supporting ODP - Translating LOTOS to Z

    Get PDF
    This paper describes a translation of full LOTOS into Z. A common semantic model is defined and the translation is proved correct with respect to the semantics. The motivation for such a translation is the use of multiple viewpoints for specifying complex systems defined by the reference model of the Open Distributed Processing (ODP) standardization initiative. The postscript version available here is an extended version of what was published

    Multiparton Interactions in Photoproduction at HERA

    Get PDF
    The high energy photoproduction of jets is being observed at the ep collider, HERA. It may be that the HERA centre-of-mass energy is sufficiently large that the production of more than one pair of jets per ep collision becomes possible, owing to the large number density of the probed gluons. We construct a Monte Carlo model of such multiparton interactions and study their effects on a wide range of physical observables. The conclusion is that multiple interactions could have very significant effects upon the photoproduction final state and that this would for example make extractions of the gluon density in the photon rather difficult. Total rates for the production of many (i.e. > 2) jets could provide direct evidence for the presence of multiple interactions, although parton showering and hadronization significantly affect low transverse energy jets.Comment: 21 pages, 8 figures include
    corecore